Optimal Iterative Discriminant Analysis In Kernel Space

نویسندگان

  • Wei Liu
  • Hexin Chen
  • Mianshu Chen
چکیده

Kernel trick is a powerful tool being used for solving complex pattern classification problem. As long as a linear feature extraction algorithm can be expressed exclusively by dot-products, it can be extended to non-linear version by combining kernel method. In this paper, we present such an improved iterative algorithm used for linear discriminant analysis. By mapping data onto high dimensional feature space suing kernel function, we make data linearly separable and run iterative LDA there. Experiments with minimum distance classifier and nearest neighbor classifier show that our improved algorithm has a better performance than traditional Fisher discriminant and standard iterative LDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

Adaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion

Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...

متن کامل

Optimal subset-division based discrimination and its kernelization for face and palmprint recognition

Discriminant analysis is effective in extracting discriminative features and reducing dimensionality. In this paper, we propose an optimal subset-division based discrimination (OSDD) approach to enhance the classification performance of discriminant analysis technique. OSDD first divides the sample set into several subsets by using an improved stability criterion and K-means algorithm. We separ...

متن کامل

Kernel Reference Discriminant Analysis

Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discriminant Analysis (KDA) are well-known and widely used techniques for supervised feature extraction and dimensionality reduction. They determine an optimal discriminant space for (non)linear data projection based on certain assumptions, e.g. on using normal distributions (either on the input or in the kernel space) for each...

متن کامل

An Iterative Algorithm for KLDA Classifier

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form ─ kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003